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Abstract. In this paper, the symmetric irreducible representations of SO, in (SU,)3 basis 
are constructed. Some reduced matrix elements and closed expressions of simple isoscalar 
factors for SO, 3 (SUJ3 are obtained. Finally, an example is given to show how to obtain 
physical states from these mathematical ones. 

1. Introduction 

In nuclear and atomic physics the group chain SU, 3 SO, 3 SO3 is very significant. 
For example, in nuclear physics this group chain is used to classify the octopole 
vibrations of the nucleus [l] ,  and in atomic physics this group chain is used for 
classification of the f-electron, as has already been discussed by Racah [ 2 ]  and Judd 
[ 3 ] .  However, SO, 2 SO3 is not simply reducible. In this reduction there are several 
missing labels, for which it is extremely difficult to find a simple physical interpretation. 
For this reason, De Mayer er a1 have examined the mathematical basis of SO, by the 
standard group-theoretical method [4,5] and the shift-operator technique [ 6 , 7 ] .  But 
the explicit bases are not constructed in these papers, for which it is important to 
express the physical basis in terms of mathematical ones. 

Generally, there is the reduction SOZn+, + (SU,)" for integer n, where we restrict 
consideration to symmetric irreps of SO2,,+,. The first non-trivial case, SO5, has been 
discussed by Kemmer et a1 [SI and Sun [9]. However, this reduction does not provide 
sufficient labels to lift degeneracy for the n > 3 case [4], so we will only treat symmetric 
irreps of SO, in this paper. 

The intermediate steps in SO, = (SU2)3 may be analysed by using the embedding 
of semisimple complex Lie algebras in semisimple complex Lie algebras [ 101. We find 
that only (SU2)3 is the maximal subalgebra of SO, in this reduction, i.e. there is no 
intermediate step in the reduction. The nine positive roots of SO, (B3) are described 
[4] in an orthonormal basis {e, ,  e,, e3} as e , ,  e , ,  e 3 ,  e, i e 3 ,  e2 i e 3 .  The three simple 
roots a , ,  a,, a3 are a ,  = e ,  - e , ,  a2 = e, - e 3 ,  a3 = e 3 ,  In the root system of the algebra 
B3 (SO,) the appointment of three mutually orthogonal simple roots a i ,  a ;  and a ;  for 
the subalgebra (SU,)3 is not unique. I t  is clear that having defined a i ,  a5 and a;  in 
terms of e , ,  e, and e 3 ,  any formal permutation of the latter basis vectors leads to 
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another acceptable definition of the simple roots. The branching rule is also indepen- 
dent of any particular choice. Our subalgebra choice based on the f-boson realisation 
of SO, will be given in the next section. 

The complete inclusion SO, 3 (SU,)’ 3 SU2 can also be considered. However, 
(SU,)’ 3 SU2 is trivial because the basis of (SU,)’ 2 SU, are just the three SU, bases 
coupled to the final subgroup SU,; the coupling coefficients needed here are CG 
coefficients of SU2, which are well known. In addition, the physical basis SO, 3 SO3 
can easily be constructed from those non-physical bases SO, 2 (SU,)3. 

In this paper, our discussion will be based on boson realisation of this group chain. 
The boson realisation of group symmetric irreps can be applied to a large class of 
simple Lie groups (see e.g. [ 111). 

In § 2 we will give an expression for the generators and Casimir operator of SO,. 
In § 3 we will construct the explicit basis of SO,. In 0 4 we will given an example 
which shows how to obtain a physical state. The reduced matrix elements and some 
simple isoscalar factors for SO, 3 (SU2)3 will be given in § 5. 

2. Generators 

The branching rule of SO, 2 (SU,)3 is 

SO, 2 SU; x SU; x SU,‘ ( w ,  0,O) = a x b x c (1) 

where w is the seniority quantum number, and 

2b = 2 ~ =  w - a  -2k (?a)  

a = 0 , 1 , 2  , . . . ,  w (26) 

k = 0 ,  1 ,2 , .  . . , [ ~ ( W - U ) ] .  (2c) 

Here the symbol [x ]  denotes the maximum integer less than or equal to x. 
We will use creation (annihilation) operatorsf: ( f , ) ,  p = 0, *l, *2, *3, to construct 

the generators of SU,, SO, and (SU2)3. First, we will define a set of uncoupling 
generators for the group chain (1) as follows [12]: 

/.I,, v = 0, *l, * 2 ,  +3 (3) 

wherefp = (-l)””f-,. Obviously, xFv= --xVp, xrF = 0, ( x F Y )  = (-l)fi+yx-u-,, and in 
addition they satisfy the following commutation relation: 

-ff -ftf 
X p Y -  p U U p 

t 

Using xPv ,  we can construct the generators of SO, and (SUJ3 as follows: 

su;: ao=X,-1,a*=+/ylo ( 5 a )  

SU;: b o = i ( x 3 - 3 - ~ 2 - 2 ) ,  b== *(1/4)X+3=2 (5b) 

(5c) SU‘: 2 0 - 2 ( x 2 - 2 + x 3 - 3 ) ,  -1 C k  = r ( l / f i ) X + 3 ~ ~ *  

The remaining generators of SO, can be put in the form of a tensor operator as given 
in table 1. 
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Table 1. Tensor operator TA%$. 

Using (4), we can construct the commutation relations for these operators, 

+ ( l/Jz)sp-p.sy-y'( -l) '-Y-@(lnla'Jla + cy')ao+d 

+ ( l/Jz)6,-,,8,- ,,( - 1) '1 Ip + p ' )  bp+pf. 
Using these generators, we can write the Casimir operator of SO, as 

C, = a 2 / 2  + b2 + c2 + 2 d (  T'il x TIif 10 ( O )  * 

3. Basis vectors 

First, we introduce the following generators of SU( 1 , l ) :  

s+ = ; (- 1) "f R f L m  

s-=;c (-l)"fmfpm 

SO = i 

m 

m 

(f R fm + f m f L  
m 

they satisfy the following commutation relations: 

[ S + ,  s-I = -2so [So, & I =  *s*. ( 8 6 )  

We can use the generators of SU(1, l )  to construct the tower of symmetric irreps of 
SU, and hence SO(,, c SU(,,. Let the basis vector of SU, 2 SO, be Inwan), where R 
corresponds to other quantum numbers. The expectation value of the product S+S- 
is given by 

( nwR I S ,  S - /  n w a )  = So( So - 1 ) - S (  S - 1 ) ( 8 C )  
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where S(S- 1) is the eigenvalue of the Casimir operator of SU(1, 1). Note that 

So= n/2+: s= w/2+:. ( 8 d )  

The generators of SO, and  of SU7 leave the number of bosons invariant because they 
commute with the boson number operator. The generators of SU(1 , l )  change the 
boson number by 0 or  *2. The state InwR) with n = w satisfies 

s-I wwR)  = 0 ( s e )  
because the state 1 w w R )  has the maximum seniority. The generators of SU( 1 , l )  group 
commute with SO7 generators. Thus, the SU(1, 1) shift-up operator creates an  invariant 
set of states with an even number of bosons (one state for each even n)  from the 
ground state with no boson, and  another invariant set of states with an  odd number 
of bosons from the ground state with a single boson. 

Thus, the state with n bosons which loads the symmetric irrep of SU, can be 
constructed by acting on i( n - w )  boson pairing operators S+.  It is easy to prove that 
the normalised state vector InwR) can be written as 

InwR)= ~ Y ( s + ) ~ l w w R )  ( 9 a )  

where 

n = w+2p. 

Next, we construct the state IwwR). In the group chain ( l ) ,  R can be written more 
explicitly as a, a,; 6, bo, ca. Obviously, the eigenstate of the operators C,, a*, a,, b2, 
bo, c, with eigenvalues & w ( w + 5 ) ,  a ( a + l ) ,  a, $(w-a ) [ i (w-a )+ l ] ,  f ( w - a ) , i ( w - a )  
can be written as 

11) = Iww; aa,; bb,c,) = Nlf;"f~"~"lO) ( l o a )  

with 

NI = ( 1 )'", 
a ! (  w - a ) !  

Third, it can be proved that the operators S:,=(fo'fo'-2f:f?,)/2 and S i3= 
( f i f ~ ~  -f3'fT3)/2 are S U ~  x SU," x S U ~  invariants. Let 

Using the relation S-12) = 0, we get 

(2w - 2 a - 2 k + 2 ) !  ! (2a+1) ! !  S+fS+k-f *:o=Z(-l)f(k) f t ( 2 ~ - 2 ~  -2k -2 t+2) !  ! ( 2 ~ + 2 t + I ) ! !  I O  23 

and 

w - a  - 2 k + 1 ) ( 2 a + 2 k + l ) !  ! (2w-2k+3)!!  
k ! a ! ( w  - a - k +  1)!(2w+3)!  ! ( 2 a +  l ) !  ! 

Hence the state 12) is a simultaneous eigenstate of the operators C,, a2 ,  a,, b2,  bo, co 
with eigenvalues $ w ( w + 5 ) ,  a ( a  + l ) ,  a, [& (w  - a )  - k][$(w - a )  - k +  11, & ( w  - a )  - k, 

> .  (1lc)  

; ( w  - a )  - k. 
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where 

( a  - ao)! a ! (  w - a - 2 k ) ! ( f ( w  - a )  - k -  CO) !  1 
X 

( 0  - a,-2U)! (U,+ U ) !  (2U) !  ! (bo- C o s  T )  ! (f(  W - U )  - k + CO- T ) !  

( 12b)  
and 

4. Physical state 

In nuclear physics, for example, in order to describe octopole vibrations in nuclei, the 
usual I B M  (s-d) model is extended to include the f boson [13, 141. The SO, 3 SO3 
chain is very important in these applications. In this case, the basis vectors can be 
written as 

l ~ ~ M ) = r l ~ X ) , x  1bfLf)IL ( 1 3 )  
where the subscript c denotes the positive-parity core of active s and d bosons, while 
lnfLf)  denotes the SO, 2 SO, basis vectors. In the following we will focus our attention 
on the construction of the basis vectors for the f-boson system for the SO, 3 SO3 chain. 

The states constructed in § 3 do not have good angular momentum, and as such 
are not physical states. In practical calculations this problem may be solved by requiring 
the states to be eigenstates of the angular momentum L2 [ 1 2 ] .  We will give a method 
used to construct the basis vectors for SO, 2 SO3 as shown below. 

Firstly, we consider the highest-weight state 

1 ww; 00; 4 W  fw fw, = mf:"io) (14)  

Then we act on (14)  with L - ,  which gives a linear combination of the states with 
which corresponds to the state with L = 3 w and M = 3 w. 

the same w and M. The angular momentum operators are defined as 

Lo = a. + 5 bo+ co = d % ( f ' f ) t '  ( 15a)  
(15b)  L* =v%(a,+ c,) -VmTL,",tq =m(f+f)y:. 

We also have 
T!fl i i lww; U U ~ ;  bboco) 

1 
4 ( 2 b + 1 ) ( 2 a + 1 ) ( 2 ~ + 3 ) ( b + l )  

( w - U - 2 b )  ( w + U + 2 b + 5 ) (  U + U, + 1 ) (  U + U, + 2)( b - bo + I ) (  b + CO + 1 )  =-(  
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x I W W ;  a - 1 ao+ 1; b + f bo - f cO+i )  
1 

-- 4 ( 
x I W W ;  U - 1 ao+l; b-fbo-ico+f)  

( w - U - 26 + 2)( w + U + 26 + 3)( U - ao)( U - U, - 1)( b - bo)( b - CO) 
(2b + 1 ) ( 2 ~  + 1 ) ( 2 ~  - l ) b  

1 ( W  - ~ + 2 b + 4 ) ( ~ + ~  - 2 b +  l ) ( ~  - u ~ ) ( u  - u O -  l ) (b  - bo+ l ) ( b + ~ o +  1) 
(26 + 1 ) ( 2 ~  + 1 ) ( 2 ~  - l ) (b  + 1) 

( w - U + 26 + 2)( w + U - 2b + 3 ) ( ~  + ao+ l ) ( a  + u O +  2)( b + bo)( b - CO) ”* 

+- 4 ( 

-- 4 ( (2b+1)(2a+1)(2a+3)b ) 

1 
x ~ W W ;  a - 1 a,+ 1; b +f bo-ico+f) 

1 

(16) X ( W W ;  a + l a o + l ;  b-ibo-fco+f).  

For simplicity, we only discuss the w = 3 case as an example; in this case the highest 
state is f:’ /O) = 13; 00; f f f), which corresponding to the physical state with L = 9 and 
M = 9. Acting on 13; 00; f 2 f) with L- and using (15) and (16), we have L-13; 00; f f) = 
-313; 00; f f f), which is the physical state with L = 9 and M = 8. Similarly, acting on 
13; 00; f f 1) with L-, we obtain 

L-13; OO;ff4)=2&13; O O ; ; f - f ) + & 1 3 ;  11; 111) (17) 
the state on the RHS corresponding to the state with L = 9 and M = 7. The state with 
L = 7 and M = 7 can now be obtained by its normalisation and its orthogonality with 
IL=9 M = 7 ) :  

l L = 7  M=7)=2&13; 11; 111)-&13; 0 0 ; j f - f )  (18) 
which is unnormalised and determined within a phase factor. 

quantum numbers. 
We can use this method to obtain all the states with good angular momentum 

5. Reduced matrix elements 

In this section we will calculate the matrix elements of Tf2tply and some simple isoscalar 
factors for SO, = (su,)~. 

T!#il w ;  aa,; bbobo) 

First, by acting with T?/ii on (12a) for co = bo, we obtain 

1 ( w - U -2b)( W +  U $26-1- 5 ) ( ~  -U,+ l ) ( ~  - ~ o + 2 ) ( b +  bo+ 1)2 
(2b + 1)(2u + 1)(2a + 3)( b + 1) 

( w - U - 2 b + 2)( w + U + 2 b + 3)( U + uO)( U + U, - 1 )( b - bo)* 

=-( 4 ) 

+- 4 ( ( 2 b + 1 ) ( 2 ~ + 1 ) ( 2 ~ - l ) b  ) 
X ~ W ;  a i - I a0 -1 ;  b+fbo+ ibo+f )  

1 

x / w ; a - I a O - I ;  b-fbo+fbo+f)  

1 ( w - U  + 2b +4)( w + U -2b + I ) ( u  + u ~ ) ( u  + U,- l ) (b  + bo+ 1)* 

(19) 

+-( 4 (2b+ 1)(2u + 1)(2u +3)b  
x I W ;  U + 1 a0 - 1; b -f bo+; bo+;). 
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We also have 

b-lw; U U , ;  bboc,J=-Jf(b+bo)(b-b,+l)lw; U U , ;  bbo-1~0)  

c-I w ;  aa,; bboco) = - J f (b  + c,)(b - co+ 1)1 w ;  aa,; bboco- 1) (20) 

a- lw;  aa,; bboco)= - J f ( a + a o ) ( a - a o + l ) l w ;  aao-1;  bboco). 

Using these results and Wigner-Eckart theorem, we obtain the following reduced 
matrix elements of T:!~: 

( w a  + 1 b +i l l  TL4'IIwab)=4[(w + U +2b+5)(w - U -2b)(2b+ 1 ) ( 2 b + 2 ) ( ~  + 1)]'l2 

(wa + 1 6 -411 T'"llwab)=f[(w - U + 2 b + 2 ) ( ~ + ~  -2b+3)(2b+ 1 ) ( 2 b ) ( ~ +  l)]''2. 
(21) 

The above results are the same as given by [5]. Furthermore, acting with f :  on (12a) 
we get 

(w + 1 a b + f l l f ' I I  wab) 

= [ ( w  - U +2b+4)(2b + 1)(2b + 2 ) ( 2 ~  + l)(w + U + 2 b + 5 ) / 2 ( 2 ~ + 5 ) ] ' ' ~ .  
(22a) 

Similarly, acting with f on (12a), we obtain 

( w + l  a + l  bllf+llwab) 

= [( w + U -26 +3)( w + U +2b  + 5 ) ( ~  + 1)(2b + 1 ) 2 / ( 2 ~ +  5)]1'2. (22b) 

We know that f: is simultaneously a rank-1 tensor of SO,, f-spinor of SU," and 
SU; and scalar of SU,", the isoscalar factor for SU, 2 SO7 (wwll 1 1  w + 1 w + 1) = 1 and 
( w  + 1111 f +lllw) = my where ( w  + llllf'illw) is a SU, reduced matrix element. Using 
these results, we obtain the SO7 2 (SU2)3 isoscalar factors as shown below: 

w - a + 2b + 3)( w + a + 26 +4)b ' I2  

(( (2w+5)(w+ 1)(2b+ 1) -1 (wa b - f 10fll w + 1 ab) = 

w + U - 2b + 2)( w + U + 2b + 4 ) ~  
(( (2w + 5 ) ( w  + 1)(2a + 1) 

( w a  - 1 b 11011 w + 1 ab) = 

( U  + l)(w - U -2b+  l ) (w - U + 2 b + 3 )  ( (2w+5) (w+1) (2a+ l )  
( w a  + 1 b110/1 w + 1 ab)  = 

w - U - 2 b +  I ) ( W + U  -2b+2)  
w+5)(w+ 1)(2b + 1) 

(wa b + f lOfll  w + 1 ab) = 

By using the reciprocity relation 

(w+labl / lwa 'b ' )  
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the isoscalar factors (wa’b’l /I w - 1 ab) can also be obtained; the results are summarised 
as follows: 

w - U - 2 b + 1) ( w + a - 2 b + 1) b 
(( (2w +5)(w+4)(2b+ 1) 

(wa b -f lOf l l  w - 1 ab) = 

w - U  -2b+  l ) (w - U + 2 b + 3 ) ~  
(( (2w+ 5)(w+4)(2a + 1) 

( ( 2 w + 5 ) ( w + 4 ) ( 2 a + l )  

( w a - 1 b 110 11 w - 1 ab) = 

( w + a - 2b + 2)( w + a + 2 b + 4)( a + 1) 
( w a  + 1 b1101/ w - 1 ab )=  

( w  - a +2b  + 3 ) ( w  + a +2b +4)(b + 1) 
(2w +5)( w +4)(2b + 1) ( (wa b +;10;11 w - 1 ab) = 

where we simply choose y = 0. 

6. Summary 

In this paper we have used the method outlined in [12] to construct the basis vectors 
for the symmetric irreps of SO, = (SU2)3. It can be seen that the missing-label problem 
can be solved by using the mathematical basis, and that the explicit basis vectors can 
be constructed by using the boson operator technique (BOT). In addition, this technique 
is easier than other methods [5] for deriving the reduced matrix elements and the 
isoscalar factors. By using the angular momentum projection procedure, the eigenstates 
of the angular momentum L2 can be constructed with these basis vectors. 
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