The symmetric irreducible representations of SO_{7} in $\left(\mathrm{SU}_{2}\right)^{3}$ basis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224105
(http://iopscience.iop.org/0305-4470/22/19/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:36

Please note that terms and conditions apply.

The symmetric irreducible representations of SO_{7} in $\left(\mathrm{SU}_{2}\right)^{3}$ basis

Feng Pan \dagger, Yu-Fang $\mathrm{Cao} \ddagger$ and Zhen-Yong Pan \ddagger
\dagger Department of Physics, Liaoning Normal University, Dalian 116022, People's Republic of China
\ddagger Department of Physics, East China Norma! University, Shanghai 200062, People's Republic of China

Received 18 March 1988, in final form 3 May 1989

Abstract

In this paper, the symmetric irreducible representations of SO_{7} in $\left(\mathrm{SU}_{2}\right)^{3}$ basis are constructed. Some reduced matrix elements and closed expressions of simple isoscalar factors for $\mathrm{SO}_{7}=\left(\mathrm{SU}_{2}\right)^{3}$ are obtained. Finally, an example is given to show how to obtain physical states from these mathematical ones.

1. Introduction

In nuclear and atomic physics the group chain $\mathrm{SU}_{7} \supset \mathrm{SO}_{7} \supset \mathrm{SO}_{3}$ is very significant. For example, in nuclear physics this group chain is used to classify the octopole vibrations of the nucleus [1], and in atomic physics this group chain is used for classification of the f-electron, as has already been discussed by Racah [2] and Judd [3]. However, $\mathrm{SO}_{7} \supset \mathrm{SO}_{3}$ is not simply reducible. In this reduction there are several missing labels, for which it is extremely difficult to find a simple physical interpretation. For this reason, De Mayer et al have examined the mathematical basis of SO_{7} by the standard group-theoretical method [4,5] and the shift-operator technique [6,7]. But the explicit bases are not constructed in these papers, for which it is important to express the physical basis in terms of mathematical ones.

Generally, there is the reduction $\mathrm{SO}_{2 n+1} \rightarrow\left(\mathrm{SU}_{2}\right)^{n}$ for integer n, where we restrict consideration to symmetric irreps of $\mathrm{SO}_{2 n+1}$. The first non-trivial case, SO_{5}, has been discussed by Kemmer et al [8] and Sun [9]. However, this reduction does not provide sufficient labels to lift degeneracy for the $n>3$ case [4], so we will only treat symmetric irreps of SO_{7} in this paper.

The intermediate steps in $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$ may be analysed by using the embedding of semisimple complex Lie algebras in semisimple complex Lie algebras [10]. We find that only $\left(\mathrm{SU}_{2}\right)^{3}$ is the maximal subalgebra of SO_{7} in this reduction, i.e. there is no intermediate step in the reduction. The nine positive roots of $\mathrm{SO}_{7}\left(\mathrm{~B}_{3}\right)$ are described [4] in an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ as $e_{1}, e_{2}, e_{3}, e_{1} \pm e_{3}, e_{2} \pm e_{3}$. The three simple roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are $\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \alpha_{3}=e_{3}$. In the root system of the algebra $\mathrm{B}_{3}\left(\mathrm{SO}_{7}\right)$ the appointment of three mutually orthogonal simple roots $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ and α_{3}^{\prime} for the subalgebra $\left(\mathrm{SU}_{2}\right)^{3}$ is not unique. It is clear that having defined $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ and α_{3}^{\prime} in terms of e_{1}, e_{2} and e_{3}, any formal permutation of the latter basis vectors leads to
another acceptable definition of the simple roots. The branching rule is also independent of any particular choice. Our subalgebra choice based on the f-boson realisation of SO_{7} will be given in the next section.

The complete inclusion $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3} \supset \mathrm{SU}_{2}$ can also be considered. However, $\left(\mathrm{SU}_{2}\right)^{3} \supset \mathrm{SU}_{2}$ is trivial because the basis of $\left(\mathrm{SU}_{2}\right)^{3} \supset \mathrm{SU}_{2}$ are just the three SU_{2} bases coupled to the final subgroup SU_{2}; the coupling coefficients needed here are cG coefficients of SU_{2}, which are well known. In addition, the physical basis $\mathrm{SO}_{7} \supset \mathrm{SO}_{3}$ can easily be constructed from those non-physical bases $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$.

In this paper, our discussion will be based on boson realisation of this group chain. The boson realisation of group symmetric irreps can be applied to a large class of simple Lie groups (see e.g. [11]).

In $\S 2$ we will give an expression for the generators and Casimir operator of SO_{7}. In § 3 we will construct the explicit basis of SO_{7}. In § 4 we will given an example which shows how to obtain a physical state. The reduced matrix elements and some simple isoscalar factors for $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$ will be given in $\S 5$.

2. Generators

The branching rule of $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$ is

$$
\begin{equation*}
\mathrm{SO}_{7} \supset \mathrm{SU}_{2}^{a} \times \mathrm{SU}_{2}^{b} \times \mathrm{SU}_{2}^{c} \quad(w, 0,0)=a \times b \times c \tag{1}
\end{equation*}
$$

where w is the seniority quantum number, and

$$
\begin{align*}
& 2 b=2 c=w-a-2 k \tag{2a}\\
& a=0,1,2, \ldots, w \tag{2b}\\
& k=0,1,2, \ldots,\left[\frac{1}{2}(w-a)\right] . \tag{2c}
\end{align*}
$$

Here the symbol $[x]$ denotes the maximum integer less than or equal to x.
We will use creation (annihilation) operators $f_{\mu}^{\dagger}\left(f_{\mu}\right), \mu=0, \pm 1, \pm 2, \pm 3$, to construct the generators of $\mathrm{SU}_{7}, \mathrm{SO}_{7}$ and $\left(\mathrm{SU}_{2}\right)^{3}$. First, we will define a set of uncoupling generators for the group chain (1) as follows [12]:

$$
\begin{equation*}
\chi_{\mu \nu}=\tilde{f}_{\mu}^{\prime} \tilde{f}_{\nu}-f_{\nu}^{\dagger} \tilde{f}_{\mu} \quad \mu, \nu=0, \pm 1, \pm 2, \pm 3 \tag{3}
\end{equation*}
$$

where $\tilde{f}_{\mu}=(-1)^{1+\mu} f_{-\mu}$. Obviously, $\chi_{\mu \nu}=-\chi_{\nu \mu}, \chi_{\mu \mu}=0,\left(\chi_{\mu \nu}\right)^{\dagger}=(-1)^{\mu+\nu} \chi_{-\nu-\mu}$, and in addition they satisfy the following commutation relation:

$$
\begin{align*}
{\left[\chi_{\mu \nu}, \chi_{\rho \sigma}\right]=} & (-1)^{1+\nu} \chi_{\mu \sigma} \delta_{\rho-\nu}+(-1)^{1+\sigma} \chi_{\nu \rho} \delta_{\mu-\sigma} \\
& +(-1)^{1+\nu} \chi_{\rho \mu} \delta_{\sigma-\nu}+(-1)^{1+\rho} \chi_{\sigma \nu} \delta_{\mu-\rho} . \tag{4}
\end{align*}
$$

Using $\chi_{\mu \nu}$, we can construct the generators of SO_{7} and $\left(\mathrm{SU}_{2}\right)^{3}$ as follows:

$$
\begin{align*}
& \mathrm{SU}_{2}^{a}: a_{0}=\chi_{1-1}, a_{ \pm}= \pm \chi_{10} \tag{5a}\\
& \mathrm{SU}_{2}^{b}: b_{0}=\frac{1}{2}\left(\chi_{3-3}-\chi_{2-2}\right), b_{ \pm}= \pm(1 / \sqrt{2}) \chi_{ \pm 3 \pm 2} \tag{5b}\\
& \mathrm{SU}_{2}^{c}: c_{0}=\frac{1}{2}\left(\chi_{2-2}+\chi_{3-3}\right), c_{ \pm}=\mp(1 / \sqrt{2}) \chi_{ \pm 3 \mp 2} . \tag{5c}
\end{align*}
$$

The remaining generators of SO_{7} can be put in the form of a tensor operator as given in table 1.

Table 1. Tensor operator $T_{\alpha \beta \gamma}^{141}$.

γ	α / β	$\frac{1}{2}$	$-\frac{1}{2}$
$\frac{1}{2}$	1	$(1 / \sqrt{2}) \chi_{31}$	$(1 / \sqrt{2}) \chi_{-21}$
	0	$(1 / \sqrt{2}) \chi_{30}$	$(1 / \sqrt{2}) \chi_{-20}$
	-1	$(1 / \sqrt{2}) \chi_{3-1}$	$(1 / \sqrt{2}) \chi_{-2-1}$
$-\frac{1}{2}$	1	$(1 / \sqrt{2}) \chi_{12}$	$(1 / \sqrt{2}) \chi_{1-3}$
	0	$(1 / \sqrt{2}) \chi_{02}$	$(1 / \sqrt{2}) \chi_{0-3}$
	-1	$(1 / \sqrt{2}) \chi_{-12}$	$(1 / \sqrt{2}) \chi_{-1-3}$

Using (4), we can construct the commutation relations for these operators,

$$
\begin{equation*}
\left[A_{+}, A_{-}\right]=-A_{0} \quad\left[A_{0}, A_{ \pm}\right]= \pm A_{ \pm} \tag{6a}
\end{equation*}
$$

where A_{i} can be taken as a_{i}, b_{i} or c_{i}, for $i=+1,-1,0$, and

$$
\begin{align*}
& {\left[a_{ \pm}, T_{\alpha \beta \gamma}^{142}\right]=\mp \sqrt{\frac{1}{2}(1 \mp \alpha)(2 \pm \alpha)} T_{\alpha \pm 1 \beta \gamma}^{14 \mu}} \\
& {\left[b_{ \pm}, T_{\alpha \beta \gamma}^{12 \frac{1}{2}}\right]=\mp \sqrt{\frac{1}{2}\left(\frac{1}{2} \mp \beta\right)\left(\frac{3}{2} \pm \beta\right)} T_{\alpha \beta \pm 1 \gamma}^{1 \frac{1}{12}}} \tag{6b}\\
& {\left[c_{ \pm}, T_{\alpha \beta \gamma}^{11 \frac{1}{2}}\right]=\mp \sqrt{\frac{1}{2}\left(\frac{1}{2} \mp \gamma\right)\left(\frac{3}{2} \pm \gamma\right)} T_{\alpha \beta \gamma \pm 1}^{112}}
\end{align*}
$$

$\left[T_{\alpha \beta \gamma}^{14 \xi}, T_{\alpha^{2} \beta^{\prime} \gamma^{\prime}}^{1+\frac{1}{2}}\right]$

$$
\begin{align*}
= & (1 / \sqrt{2}) \delta_{\alpha-\alpha^{\prime}} \delta_{\beta-\beta^{\prime}}(-1)^{\frac{3}{2}-\alpha-\beta}\left\langle\left.\frac{1}{2} \gamma_{2}^{1} \gamma^{\prime} \right\rvert\, 1 \gamma+\gamma^{\prime}\right\rangle c_{\gamma+\gamma^{\prime}} \\
& +(1 \sqrt{2}) \delta_{\beta-\beta} \delta_{\gamma-\gamma^{\prime}}(-1)^{1-\gamma-\beta}\left\langle 1 \alpha 1 \alpha^{\prime} \mid 1 \alpha+\alpha^{\prime}\right\rangle a_{\alpha+\alpha^{\prime}} \\
& +(1 / \sqrt{2}) \delta_{\alpha-\alpha} \delta_{\gamma-\gamma^{\prime}}(-1)^{\frac{3}{2}-\alpha-\gamma}\left(\frac{1}{2} \beta^{\frac{1}{2}} \beta^{\prime}\left|1 \beta+\beta^{\prime}\right\rangle b_{\beta+\beta^{\prime}} .\right. \tag{6c}
\end{align*}
$$

Using these generators, we can write the Casimir operator of SO_{7} as

$$
\begin{equation*}
C_{7}=a^{2} / 2+b^{2}+c^{2}+2 \sqrt{3}\left(T^{1 \frac{1}{22}} \times T^{1 \frac{11}{2} \frac{1}{2}}\right)_{0}^{(0)} . \tag{7}
\end{equation*}
$$

3. Basis vectors

First, we introduce the following generators of $\operatorname{SU}(1,1)$:

$$
\begin{align*}
& S_{+}=\frac{1}{2} \sum_{m}(-1)^{m} f_{m}^{\dagger} f_{-m}^{\dagger} \\
& S_{-}=\frac{1}{2} \sum_{m}(-1)^{m} f_{m} f_{-m} \tag{8a}\\
& S_{0}=\frac{1}{4} \sum_{m}\left(f_{m}^{\dagger} f_{m}+f_{m} f_{m}^{\dagger}\right)
\end{align*}
$$

they satisfy the following commutation relations:

$$
\begin{equation*}
\left[S_{+}, S_{-}\right]=-2 S_{0} \quad\left[S_{0}, S_{ \pm}\right]= \pm S_{ \pm} . \tag{8b}
\end{equation*}
$$

We can use the generators of $\operatorname{SU}(1,1)$ to construct the tower of symmetric irreps of SU_{7} and hence $\mathrm{SO}_{(7)} \subset \mathrm{SU}_{(7)}$. Let the basis vector of $\mathrm{SU}_{7} \supset \mathrm{SO}_{7}$ be $|n w \Omega\rangle$, where Ω corresponds to other quantum numbers. The expectation value of the product $S_{+} S_{-}$ is given by

$$
\begin{equation*}
\langle n w \Omega| S_{+} S_{-}|n w \Omega\rangle=S_{0}\left(S_{0}-1\right)-S(S-1) \tag{8c}
\end{equation*}
$$

where $S(S-1)$ is the eigenvalue of the Casimir operator of $\operatorname{SU}(1,1)$. Note that

$$
\begin{equation*}
S_{0}=n / 2+\frac{7}{4} \quad S=w / 2+\frac{7}{4} \tag{8d}
\end{equation*}
$$

The generators of SO_{7} and of SU_{7} leave the number of bosons invariant because they commute with the boson number operator. The generators of $\operatorname{SU}(1,1)$ change the boson number by 0 or ± 2. The state $|n w \Omega\rangle$ with $n=w$ satisfies

$$
\begin{equation*}
S_{-}|w w \Omega\rangle=0 \tag{8e}
\end{equation*}
$$

because the state $|w w \Omega\rangle$ has the maximum seniority. The generators of $\operatorname{SU}(1,1)$ group commute with SO_{7} generators. Thus, the $\mathrm{SU}(1,1)$ shift-up operator creates an invariant set of states with an even number of bosons (one state for each even n) from the ground state with no boson, and another invariant set of states with an odd number of bosons from the ground state with a single boson.

Thus, the state with n bosons which loads the symmetric irrep of SU_{7} can be constructed by acting on $\frac{1}{2}(n-w)$ boson pairing operators S_{+}. It is easy to prove that the normalised state vector $|n w \Omega\rangle$ can be written as

$$
\begin{equation*}
|n w \Omega\rangle=\mathcal{N}\left(S_{+}\right)^{\rho}|w w \Omega\rangle \tag{9a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{N}=\left(\frac{(2 w+5)!!}{2^{\rho} \rho!(2 w+2 \rho+5)!!}\right)^{1 / 2} \quad n=w+2 \rho . \tag{9b}
\end{equation*}
$$

Next, we construct the state $|w w \Omega\rangle$. In the group chain (1), Ω can be written more explicitly as $a, a_{0} ; b, b_{0}, c_{0}$. Obviously, the eigenstate of the operators $C_{7}, a^{2}, a_{0}, b^{2}$, b_{0}, c_{0} with eigenvalues $\frac{1}{2} w(w+5), a(a+1), a, \frac{1}{2}(w-a)\left[\frac{1}{2}(w-a)+1\right], \frac{1}{2}(w-a), \frac{1}{2}(w-a)$ can be written as

$$
\begin{equation*}
|1\rangle=\left|w w ; a a_{0} ; b b_{0} c_{0}\right\rangle=N_{1} f_{1}^{+a} f_{3}^{+w-a}|0\rangle \tag{10a}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{1}=\left(\frac{1}{a!(w-a)!}\right)^{1 / 2} \tag{10b}
\end{equation*}
$$

Third, it can be proved that the operators $S_{10}^{+}=\left(f_{0}^{+} f_{0}^{+}-2 f_{1}^{+} f_{-1}^{+}\right) / 2$ and $S_{23}^{+}=$ $\left(f_{2}^{+} f_{-2}^{+}-f_{3}^{+} f_{-3}^{+}\right) / 2$ are $\mathrm{SU}_{2}^{a} \times \mathrm{SU}_{2}^{b} \times \mathrm{SU}_{2}^{c}$ invariants. Let

$$
\begin{align*}
|2\rangle & =\left|w w ; a a ; \frac{1}{2}(w-a)-k, \frac{1}{2}(w-a)-k, \frac{1}{2}(w-a)-k\right\rangle \\
& =N_{2} \Lambda_{k a}^{w} f_{1}^{+a} f_{3}^{+w-a-2 k}|0\rangle . \tag{11a}
\end{align*}
$$

Using the relation $S_{-}|2\rangle=0$, we get
$\Lambda_{k a}^{w}=\sum_{t}(-1)^{)^{\prime}}\binom{k}{t} \frac{(2 w-2 a-2 k+2)!!(2 a+1)!!}{(2 w-2 a-2 k-2 t+2)!!(2 a+2 t+1)!!} S_{10}^{+t} S_{23}^{+k-t}$
and

$$
\begin{equation*}
N_{2}=\left(\frac{(w-a-2 k+1)(2 a+2 k+1)!!(2 w-2 k+3)!!}{k!a!(w-a-k+1)!(2 w+3)!!(2 a+1)!!}\right)^{1 / 2} . \tag{11c}
\end{equation*}
$$

Hence the state $|2\rangle$ is a simultaneous eigenstate of the operators $C_{7}, a^{2}, a_{0}, b^{2}, b_{0}, c_{0}$ with eigenvalues $\frac{1}{2} w(w+5), a(a+1), a,\left[\frac{1}{2}(w-a)-k\right]\left[\frac{1}{2}(w-a)-k+1\right], \frac{1}{2}(w-a)-k$, $\frac{1}{2}(w-a)-k$.

Finally, acting $a_{-}^{a-a_{0}}, b_{-}^{(1 / 2)(w-a)-k-b_{0}}, c_{-}^{(1 / 2)(w-a)-k-c_{0}}$ on the state $|2\rangle$, we obtain a general state vector

$$
\begin{align*}
&\left|w w ; a a_{0} ; \frac{1}{2}(w-a)-k b_{0} c_{0}\right\rangle \\
&= N \Lambda_{k a}^{w} \sum_{\sigma \tau} F_{a_{0} b_{0} c_{0}}^{\sigma \tau} f_{-1}^{+\sigma} f_{0}^{+a-a_{0}-2 \sigma} f_{1}^{+a_{0}+\sigma} f_{2}^{+b_{0}-c_{0}+\tau} \\
& \quad \times f_{-2}^{+\tau} f_{-3}^{+1 / 2)(w-a)-k-b_{0}-\tau} f_{3}^{+(1 / 2)(w-a)-k+c_{0}-\tau}|0\rangle \tag{12a}
\end{align*}
$$

where

$$
\begin{align*}
& F_{a_{0} b_{0} c_{0}}^{\sigma \tau}=\left(\begin{array}{c}
\frac{1}{2}(w-a)-k-b_{0} \\
\tau
\end{array}\right. \\
& \qquad \times \frac{\left(a-a_{0}\right)!a!(w-a-2 k)!\left(\frac{1}{2}(w-a)-k-c_{0}\right)!}{\left(a-a_{0}-2 \sigma\right)!\left(a_{0}+\sigma\right)!(2 \sigma)!!\left(b_{0}-c_{0}+\tau\right)!} \frac{1}{\left(\frac{1}{2}(w-a)-k+c_{0}-\tau\right)!} \tag{12b}
\end{align*}
$$

and

$$
\begin{gather*}
N=\left(\frac{\left(a+a_{0}\right)!\left[\frac{1}{2}(w-a)-k+b_{0}\right]!\left[\frac{1}{2}(w-a)-k+c_{0}\right]!2^{a-a_{0}}}{\left(a-a_{0}\right)!(2 a)!\left[\frac{1}{2}(w-a)-k-b_{0}\right]!\left[\frac{1}{2}(w-a)-k-c_{0}\right]!}\right)^{1 / 2} \\
\times\left[N_{2} /(w-a-2 k)!\right](-1)^{a-a_{0}+(1 / 2)(w-a)-k-b_{0}} . \tag{12c}
\end{gather*}
$$

4. Physical state

In nuclear physics, for example, in order to describe octopole vibrations in nuclei, the usual IBM ($\mathrm{s}-\mathrm{d}$) model is extended to include the f boson [13, 14]. The $\mathrm{SO}_{7} \supset \mathrm{SO}_{3}$ chain is very important in these applications. In this case, the basis vectors can be written as

$$
\begin{equation*}
|\Psi I M\rangle=\left[|N \chi\rangle_{c} \times\left|n_{f} L_{f}\right\rangle\right]_{M}^{\prime} \tag{13}
\end{equation*}
$$

where the subscript c denotes the positive-parity core of active s and d bosons, while $\left|n_{f} L_{f}\right\rangle$ denotes the $\mathrm{SO}_{7} \rightleftharpoons \mathrm{SO}_{3}$ basis vectors. In the following we will focus our attention on the construction of the basis vectors for the f-boson system for the $\mathrm{SO}_{7} \supset \mathrm{SO}_{3}$ chain.

The states constructed in $\S 3$ do not have good angular momentum, and as such are not physical states. In practical calculations this problem may be solved by requiring the states to be eigenstates of the angular momentum $L^{2}[12]$. We will give a method used to construct the basis vectors for $\mathrm{SO}_{7} \supset \mathrm{SO}_{3}$ as shown below.

Firstly, we consider the highest-weight state

$$
\begin{equation*}
\left|w w ; 00 ; \frac{1}{2} w \frac{1}{2} w \frac{1}{2} w\right\rangle=\sqrt{1 / w!} f_{3}^{+w}|0\rangle \tag{14}
\end{equation*}
$$

which corresponds to the state with $L=3 w$ and $M=3 w$.
Then we act on (14) with L_{-}, which gives a linear combination of the states with the same w and M. The angular momentum operators are defined as

$$
\begin{align*}
& L_{0}=a_{0}+5 b_{0}+c_{0}=\sqrt{28}\left(f^{+} \tilde{f}\right)_{0}^{(1)} \tag{15a}\\
& L_{ \pm}=\sqrt{6}\left(a_{ \pm}+c_{ \pm}\right)-\sqrt{10} T_{ \pm 1 \pm \frac{1}{2}+\frac{1}{2}}^{1 \frac{1}{2}}=\sqrt{28}\left(f^{+} \tilde{f}\right)_{ \pm 1}^{(1)} . \tag{15b}
\end{align*}
$$

We also have

$$
\begin{aligned}
& T_{1-\frac{1}{2}=1}^{1 \frac{1}{2}}\left|w w ; a a_{0} ; b b_{0} c_{0}\right\rangle \\
& =\frac{1}{4}\left(\frac{(w-a-2 b)(w+a+2 b+5)\left(a+a_{0}+1\right)\left(a+a_{0}+2\right)\left(b-b_{0}+1\right)\left(b+c_{0}+1\right)}{(2 b+1)(2 a+1)(2 a+3)(b+1)}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{align*}
& \times\left|w w ; a-1 a_{0}+1 ; b+\frac{1}{2} b_{0}-\frac{1}{2} c_{0}+\frac{1}{2}\right\rangle \\
& -\frac{1}{4}\left(\frac{(w-a-2 b+2)(w+a+2 b+3)\left(a-a_{0}\right)\left(a-a_{0}-1\right)\left(b-b_{0}\right)\left(b-c_{0}\right)}{(2 b+1)(2 a+1)(2 a-1) b}\right)^{1 / 2} \\
& \times\left|w w ; a-1 a_{0}+1 ; b-\frac{1}{2} b_{0}-\frac{1}{2} c_{0}+\frac{1}{2}\right\rangle \\
& +\frac{1}{4}\left(\frac{(w-a+2 b+4)(w+a-2 b+1)\left(a-a_{0}\right)\left(a-a_{0}-1\right)\left(b-b_{0}+1\right)\left(b+c_{0}+1\right)}{(2 b+1)(2 a+1)(2 a-1)(b+1)}\right)^{1 / 2} \\
& \times\left|w w ; a-1 a_{0}+1 ; b+\frac{1}{2} b_{0}-\frac{1}{2} c_{0}+\frac{1}{2}\right\rangle \\
& -\frac{1}{4}\left(\frac{(w-a+2 b+2)(w+a-2 b+3)\left(a+a_{0}+1\right)\left(a+a_{0}+2\right)\left(b+b_{0}\right)\left(b-c_{0}\right)}{(2 b+1)(2 a+1)(2 a+3) b}\right)^{1 / 2} \\
& \times\left|w w ; a+1 a_{0}+1 ; b-\frac{1}{2} b_{0}-\frac{1}{2} c_{0}+\frac{1}{2}\right\rangle . \tag{16}
\end{align*}
$$

For simplicity, we only discuss the $w=3$ case as an example; in this case the highest state is $f_{3}^{+3}|0\rangle=\left|3 ; 00 ; \frac{3}{2} \frac{3}{2} \frac{3}{2}\right\rangle$, which corresponding to the physical state with $L=9$ and $M=9$. Acting on $\left|3 ; 00 ; \frac{3}{2} \frac{3}{2} \frac{3}{2}\right\rangle$ with L_{-}and using (15) and (16), we have $L_{-}\left|3 ; 00 ; \frac{3}{2} \frac{3}{2}\right\rangle=$ $-3\left|3 ; 00 ; \frac{3}{2} \frac{3}{2} \frac{1}{2}\right\rangle$, which is the physical state with $L=9$ and $M=8$. Similarly, acting on $\left|3 ; 00 ; \frac{3}{2} \frac{3}{2} \frac{1}{2}\right\rangle$ with L_{-}, we obtain

$$
\begin{equation*}
L_{-}\left|3 ; 00 ; \frac{3}{2} \frac{3}{2} \frac{1}{2}\right\rangle=2 \sqrt{3}\left|3 ; 00 ; \frac{3}{2} \frac{3}{2}-\frac{1}{2}\right\rangle+\sqrt{5}|3 ; 11 ; 111\rangle \tag{17}
\end{equation*}
$$

the state on the RHS corresponding to the state with $L=9$ and $M=7$. The state with $L=7$ and $M=7$ can now be obtained by its normalisation and its orthogonality with $|L=9 M=7\rangle$:

$$
\begin{equation*}
|L=7 M=7\rangle=2 \sqrt{3}|3 ; 11 ; 111\rangle-\sqrt{5}\left|3 ; 00 ; \frac{3}{2} \frac{3}{2}-\frac{1}{2}\right\rangle \tag{18}
\end{equation*}
$$

which is unnormalised and determined within a phase factor.
We can use this method to obtain all the states with good angular momentum quantum numbers.

5. Reduced matrix elements

In this section we will calculate the matrix elements of $T_{\alpha \beta \gamma}^{1 \frac{1}{1}}$ and some simple isoscalar factors for $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$.

First, by acting with $T_{-1 \frac{12}{1 \frac{1}{2}}}$ on (12a) for $c_{0}=b_{0}$, we obtain

$$
\begin{align*}
& \left.\left.T_{\left.-1 \frac{1}{2} \right\rvert\,}^{\left.1 \frac{1}{2} \right\rvert\,} \right\rvert\, w ; a a_{0} ; b b_{0} b_{0}\right) \\
& =\frac{1}{4}\left(\frac{(w-a-2 b)(w+a+2 b+5)\left(a-a_{0}+1\right)\left(a-a_{0}+2\right)\left(b+b_{0}+1\right)^{2}}{(2 b+1)(2 a+1)(2 a+3)(b+1)}\right)^{1 / 2} \\
& \\
& \times\left|w ; a+1 a_{0}-1 ; b+\frac{1}{2} b_{0}+\frac{1}{2} b_{0}+\frac{1}{2}\right\rangle \\
& \\
& +\frac{1}{4}\left(\frac{(w-a-2 b+2)(w+a+2 b+3)\left(a+a_{0}\right)\left(a+a_{0}-1\right)\left(b-b_{0}\right)^{2}}{(2 b+1)(2 a+1)(2 a-1) b}\right)^{1 / 2} \\
& \tag{19}\\
& \times\left|w ; a-1 a_{0}-1 ; b-\frac{1}{2} b_{0}+\frac{1}{2} b_{0}+\frac{1}{2}\right\rangle \\
& \\
& \\
& +\frac{1}{4}\left(\frac{(w-a+2 b+4)(w+a-2 b+1)\left(a+a_{0}\right)\left(a+a_{0}-1\right)\left(b+b_{0}+1\right)^{2}}{(2 b+1)(2 a+1)(2 a+3) b}\right)^{1 / 2} \\
& \\
&
\end{align*}
$$

We also have

$$
\begin{align*}
& b_{-}\left|w ; a a_{0} ; b b_{0} c_{0}\right\rangle=-\sqrt{\frac{1}{2}\left(b+b_{0}\right)\left(b-b_{0}+1\right)}\left|w ; a a_{0} ; b b_{0}-1 c_{0}\right\rangle \\
& c_{-}\left|w ; a a_{0} ; b b_{0} c_{0}\right\rangle=-\sqrt{\frac{1}{2}\left(b+c_{0}\right)\left(b-c_{0}+1\right)}\left|w ; a a_{0} ; b b_{0} c_{0}-1\right\rangle \tag{20}\\
& a_{-}\left|w ; a a_{0} ; b b_{0} c_{0}\right\rangle=-\sqrt{\frac{1}{2}\left(a+a_{0}\right)\left(a-a_{0}+1\right)}\left|w ; a a_{0}-1 ; b b_{0} c_{0}\right\rangle
\end{align*}
$$

Using these results and Wigner-Eckart theorem, we obtain the following reduced matrix elements of $T_{\alpha \beta \gamma}^{1 \frac{12}{13}}$:

$$
\begin{align*}
& \left\langle w a+1 b+\frac{1}{2}\left\|T^{1 \frac{1}{2}}\right\| w a b\right\rangle=\frac{1}{2}[(w+a+2 b+5)(w-a-2 b)(2 b+1)(2 b+2)(a+1)]^{1 / 2} \\
& \left\langle w a+1 b-\frac{1}{2}\left\|T^{1 \frac{1}{k}}\right\| w a b\right\rangle=\frac{1}{2}[(w-a+2 b+2)(w+a-2 b+3)(2 b+1)(2 b)(a+1)]^{1 / 2} . \tag{21}
\end{align*}
$$

The above results are the same as given by [5]. Furthermore, acting with f_{3}^{+}on (12a) we get

$$
\begin{align*}
& \left\langle w+1 a b+\frac{1}{2}\left\|f^{+}\right\| w a b\right\rangle \\
& \quad=[(w-a+2 b+4)(2 b+1)(2 b+2)(2 a+1)(w+a+2 b+5) / 2(2 w+5)]^{1 / 2} \tag{22a}
\end{align*}
$$

Similarly, acting with f_{1}^{+}on (12a), we obtain

$$
\begin{align*}
& \left\langle w+1 a+1 b\left\|f^{+}\right\| w a b\right\rangle \\
& \quad=\left[(w+a-2 b+3)(w+a+2 b+5)(a+1)(2 b+1)^{2} /(2 w+5)\right]^{1 / 2} \tag{22b}
\end{align*}
$$

We know that f_{3}^{+}is simultaneously a rank-1 tensor of $\mathrm{SO}_{7}, \frac{1}{2}$-spinor of SU_{2}^{b} and SU_{2}^{c} and scalar of SU_{2}^{a}, the isoscalar factor for $\mathrm{SU}_{7} \supset \mathrm{SO}_{7}\langle w w 11 \| w+1 w+1\rangle=1$ and $\left\langle w+1\left\|f^{+}\right\| w\right\rangle=\sqrt{w+1}$, where $\left\langle w+1\left\|f^{+}\right\| w\right\rangle$ is a SU_{7} reduced matrix element. Using these results, we obtain the $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$ isoscalar factors as shown below:

$$
\begin{align*}
& \left\langle w a b-\frac{1}{2} 10 \frac{1}{2} \| w+1 a b\right\rangle=\left(\frac{(w-a+2 b+3)(w+a+2 b+4) b}{(2 w+5)(w+1)(2 b+1)}\right)^{1 / 2} \\
& \langle w a-1 b 110 \| w+1 a b\rangle=\left(\frac{(w+a-2 b+2)(w+a+2 b+4) a}{(2 w+5)(w+1)(2 a+1)}\right)^{1 / 2} \\
& \langle w a+1 b 110 \| w+1 a b\rangle=\left(\frac{(a+1)(w-a-2 b+1)(w-a+2 b+3)}{(2 w+5)(w+1)(2 a+1)}\right)^{1 / 2} \tag{23}\\
& \left\langle w a b+\frac{1}{2} 10 \frac{1}{2} \| w+1 a b\right\rangle=\left(\frac{(b+1)(w-a-2 b+1)(w+a-2 b+2)}{(2 w+5)(w+1)(2 b+1)}\right)^{1 / 2}
\end{align*}
$$

By using the reciprocity relation

$$
\left\langle w+1 a b 1 \| w a^{\prime} b^{\prime}\right\rangle
$$

$$
\begin{align*}
= & (-1)^{a^{\prime}-\alpha-a+2 b^{\prime}-2 b-2 \beta+y}\left(\frac{(2 a+1)(2 b+1)^{2}(2 w+5)(w+1)}{\left(2 a^{\prime}+1\right)\left(2 b^{\prime}+1\right)^{2}(2 w+7)(w+5)}\right)^{1 / 2} \\
& \times\left\langle w a^{\prime} b^{\prime} 1 \| w+1 a b\right\rangle \tag{24}
\end{align*}
$$

the isoscalar factors $\left\langle w a^{\prime} b^{\prime} 1 \| w-1 a b\right\rangle$ can also be obtained; the results are summarised as follows:

$$
\begin{align*}
& \left\langle w a b-\frac{1}{2} 10 \frac{1}{2} \| w-1 a b\right\rangle=\left(\frac{(w-a-2 b+1)(w+a-2 b+1) b}{(2 w+5)(w+4)(2 b+1)}\right)^{1 / 2} \\
& \langle w a-1 b 110 \| w-1 a b\rangle=\left(\frac{(w-a-2 b+1)(w-a+2 b+3) a}{(2 w+5)(w+4)(2 a+1)}\right)^{1 / 2} \\
& \langle w a+1 b 110 \| w-1 a b\rangle=\left(\frac{(w+a-2 b+2)(w+a+2 b+4)(a+1)}{(2 w+5)(w+4)(2 a+1)}\right)^{1 / 2} \tag{25}\\
& \left\langle w a b+\frac{1}{2} 10 \frac{1}{2} \| w-1 a b\right\rangle=\left(\frac{(w-a+2 b+3)(w+a+2 b+4)(b+1)}{(2 w+5)(w+4)(2 b+1)}\right)^{1 / 2}
\end{align*}
$$

where we simply choose $y=0$.

6. Summary

In this paper we have used the method outlined in [12] to construct the basis vectors for the symmetric irreps of $\mathrm{SO}_{7} \supset\left(\mathrm{SU}_{2}\right)^{3}$. It can be seen that the missing-label problem can be solved by using the mathematical basis, and that the explicit basis vectors can be constructed by using the boson operator technique (вот). In addition, this technique is easier than other methods [5] for deriving the reduced matrix elements and the isoscalar factors. By using the angular momentum projection procedure, the eigenstates of the angular momentum L^{2} can be constructed with these basis vectors.

References

[1] Rohozinski S G 1978 J. Phys. G: Nucl. Phys. 498
[2] Racah G 1949 Phys. Rev. 761352
[3] Judd B R 1963 Operator Techniques in Atomic Spectroscopy (New York: McGraw-Hill)
[4] De Meyer H, De Wilde P and Vanden Berghe G 1982 J. Phys. A: Math. Gen. 152665
[5] Vanden Berghe G, De Mayer H and De Wilde P 1982 J. Phys. A: Math. Gen. 152677
[6] Van der Jeugt J and De Wilde P 1984 J. Math. Phys. 252953
[7] De Wilde P and Van der Jeugt J 1984 J. Math. Phys. 252958
[8] Kemmer et al 1968 J. Math. Phys. 91224
[9] Sun H Z 1980 Phys. Energ. Fortis Phys. Nucl. 4478 (in Chinese)
[10] Gruber B and Samuel M T 1975 Group Theory and Its Applications vol III, ed E M Lobel (New York: Academic) p 95
[11] Arima A and Iachello F 1981 Ann. Rev. Nucl. Part. Sci. 3175
Castanos O et al 1985 J. Math. Phys. 262107
Rowe D J 1984 J. Math. Phys. 252662
[12] Yu Z R, Scholten O and Sun H Z 1986 J. Math. Phys. 27442
[13] Engel J and Iachello F 1987 Nucl. Phys. A 47261
[14] Barfield A F and Barrett B R 1988 Ann. Phys., NY 182344

